Coded Expectations for MPM1D Mathematical Process Specific Expectations Problem SolvingMPS.01develop, select, apply, and compare a variety of problem-solving strategies as they pose and solve problems and conduct investigations, to help deepen their mathematical understanding. Reasoning And ProvingMPS.02develop and apply reasoning skills (e.g., recognition of relationships, generalization through inductive reasoning, use of counter-examples) to make mathematical conjectures, assess conjectures, and justify conclusions, and plan and construct organized mathematical arguments. ReflectingMPS.03demonstrate that they are reflecting on and monitoring their thinking to help clarify their understanding as they complete an investigation or solve a problem (e.g., by assessing the effectiveness of strategies and processes used, by proposing alternative approaches, by judging the reasonableness of results, by verifying solutions). Selecting Tools and Computational StrategiesMPS.04select and use a variety of concrete, visual, and electronic learning tools and appropriate computational strategies to investigate mathematical ideas and to solve problems. ConnectingMPS.05make connections among mathematical concepts and procedures, and relate mathematical ideas to situations or phenomena drawn from other contexts (e.g., other curriculum areas, daily life, current events, art and culture, sports). RepresentingMPS.06create a variety of representations of mathematical ideas (e.g., numeric, geometric, algebraic, graphical, pictorial representations; onscreen dynamic representations), connect and compare them, and select and apply the appropriate representations to solve problems. CommunicatingMPS.07communicate mathematical thinking orally, visually, and in writing, using mathematical vocabulary and a variety of appropriate representations, and observing mathematical conventions. Number Sense and Algebra Overall Expectations NAV.01demonstrate an understanding of the exponent rules of multiplication and division, and apply them to simplify expressions; NAV.02manipulate numerical and polynomial expressions, and solve first-degree equations. Addition of Polynomials - Activity A Modeling and Solving Two-Step Equations Solving Two-Step Equations Operating with Exponents NA1.01substitute into and evaluate algebraic expressions involving exponents (i.e., evaluate expressions involving natural-number exponents with rational-number bases [e.g., evaluate (3/2)3 by hand and 9.83 by using a calculator]) (Sample problem: A movie theatre wants to compare the volumes of popcorn in two containers, a cube with edge length 8.1 cm and a cylinder with radius 4.5 cm and height 8.0 cm. Which container holds more popcorn?); NA1.02describe the relationship between the algebraic and geometric representations of a single-variable term up to degree three [i.e., length, which is one dimensional, can be represented by x; area, which is two dimensional, can be represented by (x)(x) or x2; volume, which is three dimensional, can be represented by (x)(x)(x), (x2)(x), or x3]; NA1.03derive, through the investigation and examination of patterns, the exponent rules for multiplying and dividing monomials, and apply these rules in expressions involving one and two variables with positive exponents; Dividing Exponential Expressions Exponents and Power Rules Multiplying Exponential Expressions NA1.04extend the multiplication rule to derive and understand the power of a power rule, and apply it to simplify expressions involving one and two variables with positive exponents. Arithmetic and Geometric Sequences Dividing Exponential Expressions Exponents and Power Rules Manipulating Expressions and Solving Equations NA2.01simplify numerical expressions involving integers and rational numbers, with and without the use of technology;* *The knowledge and skills described in this expectation are to be introduced as needed and applied and consolidated throughout the course; NA2.02solve problems requiring the manipulation of expressions arising from applications of percent, ratio, rate, and proportion;* *The knowledge and skills described in this expectation are to be introduced as needed and applied and consolidated throughout the course; Beam to Moon (Ratios and Proportions) Polling: Neighborhood NA2.03relate their understanding of inverse operations to squaring and taking the square root, and apply inverse operations to simplify expressions and solve equations; NA2.04add and subtract polynomials with up to two variables [e.g., (2x - 5) + (3x + 1), (3x2y + 2xy2) + (4x2y - 6xy2)], using a variety of tools (e.g., algebra tiles, computer algebra systems, paper and pencil); Addition of Polynomials - Activity A NA2.05multiply a polynomial by a monomial involving the same variable [e.g., 2x(x + 4), 2x2(3x2 - 2x + 1)], using a variety of tools (e.g., algebra tiles, diagrams, computer algebra systems, paper and pencil); NA2.06expand and simplify polynomial expressions involving one variable [e.g., 2x(4x + 1) - 3x(x + 2)], using a variety of tools (e.g., algebra tiles, computer algebra systems, paper and pencil); NA2.07solve first-degree equations, including equations with fractional coefficients, using a variety of tools (e.g., computer algebra systems, paper and pencil) and strategies (e.g., the balance analogy, algebraic strategies); Modeling and Solving Two-Step Equations Solving Two-Step Equations NA2.08rearrange formulas involving variables in the first degree, with and without substitution (e.g., in Analytic Geometry, in measurement) (Sample problem: A circular garden has a circumference of 30 m. What is the length of a straight path that goes through the centre of this garden?); NA2.09solve problems that can be modelled with first-degree equations, and compare algebraic methods to other solution methods (Sample problem: Solve the following problem in more than one way: Jonah is involved in a walkathon. His goal is to walk 25 km. He begins at 9:00 a.m. and walks at a steady rate of 4 km/h. How many kilometres does he still have left to walk at 1:15 p.m. if he is to achieve his goal?). Modeling and Solving Two-Step Equations Solving Two-Step Equations Linear Relationships Overall Expectations LRV.01apply data-management techniques to investigate relationships between two variables; LRV.02demonstrate an understanding of the characteristics of a linear relation; Linear Functions Point-Slope Form of a Line - Activity A Slope-Intercept Form of a Line - Activity A Using Tables, Rules and Graphs LRV.03connect various representations of a linear relation. Introduction to Functions Linear Functions Point-Slope Form of a Line - Activity A Slope-Intercept Form of a Line - Activity A Using Tables, Rules and Graphs Using Data Management to Investigate LR1.01interpret the meanings of points on scatter plots or graphs that represent linear relations, including scatter plots or graphs in more than one quadrant [e.g., on a scatter plot of height versus age, interpret the point (13, 150) as representing a student who is 13 years old and 150 cm tall; identify points on the graph that represent students who are taller and younger than this student] (Sample problem: Given a graph that represents the relationship of the Celsius scale and the Fahrenheit scale, determine the Celsius equivalent of -5°F.); Scatter Plots - Activity A Solving Using Trend Lines LR1.02pose problems, identify variables, and formulate hypotheses associated with relationships between two variables (Sample problem: Does the rebound height of a ball depend on the height from which it was dropped?); LR1.03design and carry out an investigation or experiment involving relationships between two variables, including the collection and organization of data, using appropriate methods, equipment, and/or technology (e.g., surveying; using measuring tools, scientific probes, the Internet) and techniques (e.g., making tables, drawing graphs) (Sample problem: Design and perform an experiment to measure and record the temperature of ice water in a plastic cup and ice water in a thermal mug over a 30 min period, for the purpose of comparison. What factors might affect the outcome of this experiment? How could you design the experiment to account for them?); LR1.04describe trends and relationships observed in data, make inferences from data, compare the inferences with hypotheses about the data, and explain any differences between the inferences and the hypotheses (e.g., describe the trend observed in the data. Does a relationship seem to exist? Of what sort? Is the outcome consistent with your hypothesis? Identify and explain any outlying pieces of data. Suggest a formula that relates the variables. How might you vary this experiment to examine other relationships?) (Sample problem: Hypothesize the effect of the length of a pendulum on the time required for the pendulum to make five full swings. Use data to make an inference. Compare the inference with the hypothesis. Are there other relationships you might investigate involving pendulums?). Correlation Populations and Samples Solving Using Trend Lines Understanding Characteristics of Linear Relations LR2.01construct tables of values, graphs, and equations, using a variety of tools (e.g., graphing calculators, spreadsheets, graphing software, paper and pencil), to represent linear relations derived from descriptions of realistic situations (Sample problem: Construct a table of values, a graph, and an equation to represent a monthly cellphone plan that costs $25, plus $0.10 per minute of airtime.); Linear Functions Point-Slope Form of a Line - Activity A Slope-Intercept Form of a Line - Activity A Using Tables, Rules and Graphs LR2.02construct tables of values, scatter plots, and lines or curves of best fit as appropriate, using a variety of tools (e.g., spreadsheets, graphing software, graphing calculators, paper and pencil), for linearly related and non-linearly related data collected from a variety of sources (e.g., experiments, electronic secondary sources, patterning with concrete materials) (Sample problem: Collect data, using concrete materials or dynamic geometry software, and construct a table of values, a scatter plot, and a line or curve of best fit to represent the following relationships: the volume and the height for a square-based prism with a fixed base; the volume and the side length of the base for a square-based prism with a fixed height.); Arithmetic Sequences Linear Functions Solving Using Trend Lines LR2.03identify, through investigation, some properties of linear relations (i.e., numerically, the first difference is a constant, which represents a constant rate of change; graphically, a straight line represents the relation), and apply these properties to determine whether a relation is linear or non-linear; Introduction to Functions Linear Functions Point-Slope Form of a Line - Activity A Slope-Intercept Form of a Line - Activity A LR2.04compare the properties of direct variation and partial variation in applications, and identify the initial value (e.g., for a relation described in words, or represented as a graph or an equation) (Sample problem: Yoga costs $20 for registration, plus $8 per class.Tai chi costs $12 per class. Which situation represents a direct variation, and which represents a partial variation? For each relation, what is the initial value? Explain your answers.); Determining a Spring Constant Direct Variation Direct and Inverse Variation LR2.05determine the equation of a line of best fit for a scatter plot, using an informal process (e.g., using a movable line in dynamic statistical software; using a process of trial and error on a graphing calculator; determining the equation of the line joining two carefully chosen points on the scatter plot). Scatter Plots - Activity A Connecting Various Representations of Linear Relations LR3.01determine values of a linear relation by using a table of values, by using the equation of the relation, and by interpolating or extrapolating from the graph of the relation (Sample problem: The equation H = 300 - 60t represents the height of a hot air balloon that is initially at 300 m and is descending at a constant rate of 60 m/min. Determine algebraically and graphically how long the balloon will take to reach a height of 160 m.); Arithmetic Sequences Linear Functions Point-Slope Form of a Line - Activity A Slope-Intercept Form of a Line - Activity A Using Tables, Rules and Graphs LR3.02describe a situation that would explain the events illustrated by a given graph of a relationship between two variables (Sample problem: The walk of an individual is illustrated in the given graph, produced by a motion detector and a graphing calculator. Describe the walk [e.g., the initial distance from the motion detector, the rate of walk].); LR3.03determine other representations of a linear relation, given one representation (e.g., given a numeric model, determine a graphical model and an algebraic model; given a graph, determine some points on the graph and determine an algebraic model); Introduction to Functions Linear Functions Point-Slope Form of a Line - Activity A Slope-Intercept Form of a Line - Activity A Using Tables, Rules and Graphs LR3.04describe the effects on a linear graph and make the corresponding changes to the linear equation when the conditions of the situation they represent are varied (e.g., given a partial variation graph and an equation representing the cost of producing a yearbook, describe how the graph changes if the cost per book is altered, describe how the graph changes if the fixed costs are altered, and make the corresponding changes to the equation). Defining a Line with Two Points Direct Variation Direct and Inverse Variation Point-Slope Form of a Line - Activity A Slope-Intercept Form of a Line - Activity A Standard Form of a Line Analytic Geometry Overall Expectations AGV.01determine the relationship between the form of an equation and the shape of its graph with respect to linearity and non-linearity; Linear Functions Slope-Intercept Form of a Line - Activity A AGV.02determine, through investigation, the properties of the slope and y-intercept of a linear relation; Distance-Time Graphs Linear Functions Point-Slope Form of a Line - Activity A Slope - Activity B Slope-Intercept Form of a Line - Activity A AGV.03solve problems involving linear relations. Linear Functions Point-Slope Form of a Line - Activity A Slope-Intercept Form of a Line - Activity A Investigating the Relationship Between the Equation of a Relation and the Shape of Its Graph AG1.01determine, through investigation, the characteristics that distinguish the equation of a straight line from the equations of nonlinear relations (e.g., use a graphing calculator or graphing software to graph a variety of linear and non-linear relations from their equations; classify the relations according to the shapes of their graphs; connect an equation of degree one to a linear relation); Cosine Function Linear Functions Point-Slope Form of a Line - Activity A Sine Function Slope-Intercept Form of a Line - Activity A AG1.02identify, through investigation, the equation of a line in any of the forms y = mx + b, Ax + By + C = 0, x = a, y = b; Defining a Line with Two Points Point-Slope Form of a Line - Activity A Slope-Intercept Form of a Line - Activity A Using Tables, Rules and Graphs AG1.03express the equation of a line in the form y = mx + b, given the form Ax + By + C = 0. Defining a Line with Two Points Slope-Intercept Form of a Line - Activity A Using Tables, Rules and Graphs Investigating the Properties of Slope AG2.01determine, through investigation, various formulas for the slope of a line segment or a line (e.g., m = rise/run, m = the change in y/the change in x or m =Δ(y)/ Δ (x),m =(y2 - y1)/(x2 - x1)), and use the formulas to determine the slope of a line segment or a line; Slope - Activity B AG2.02identify, through investigation with technology, the geometric significance of m and b in the equation y = mx + b; Defining a Line with Two Points Point-Slope Form of a Line - Activity A Slope - Activity B Slope-Intercept Form of a Line - Activity A Using Tables, Rules and Graphs AG2.03determine, through investigation, connections among the representations of a constant rate of change of a linear relation (e.g., the cost of producing a book of photographs is $50, plus $5 per book, so an equation is C = 50 + 5p; a table of values provides the first difference of 5; the rate of change has a value of 5, which is also the slope of the corresponding line; and 5 is the coefficient of the independent variable, p, in this equation); Distance-Time Graphs Distance-Time and Velocity-Time Graphs Linear Functions Point-Slope Form of a Line - Activity A Slope - Activity B Slope-Intercept Form of a Line - Activity A Using Tables, Rules and Graphs AG2.04identify, through investigation, properties of the slopes of lines and line segments (e.g., direction, positive or negative rate of change, steepness, parallelism, perpendicularity), using graphing technology to facilitate investigations, where appropriate. Slope - Activity B Using the Properties of Linear Relations to Solve Problems AG3.01graph lines by hand, using a variety of techniques (e.g., graph y = 2/3x - 4 using the y-intercept and slope; graph 2x + 3y = 6 using the x- and y-intercepts);
AG3.02determine the equation of a line from information about the line (e.g., the slope and y-intercept; the slope and a point; two points) (Sample problem: Compare the equations of the lines parallel to and perpendicular to y = 2x - 4, and with the same x-intercept as 3x - 4y = 12.Verify using dynamic geometry software.); Defining a Line with Two Points Point-Slope Form of a Line - Activity A Slope-Intercept Form of a Line - Activity A Using Tables, Rules and Graphs AG3.03describe the meaning of the slope and y-intercept for a linear relation arising from a realistic situation (e.g., the cost to rent the community gym is $40 per evening, plus $2 per person for equipment rental; the vertical intercept, 40, represents the $40 cost of renting the gym; the value of the rate of change, 2, represents the $2 cost per person), and describe a situation that could be modelled by a given linear equation (e.g., the linear equation M = 50 + 6d could model the mass of a shipping package, including 50 g for the packaging material, plus 6 g per flyer added to the package); Linear Functions Point-Slope Form of a Line - Activity A Slope - Activity B Slope-Intercept Form of a Line - Activity A AG3.04identify and explain any restrictions on the variables in a linear relation arising from a realistic situation (e.g., in the relation C = 50 + 25n, C is the cost of holding a party in a hall and n is the number of guests; n is restricted to whole numbers of 100 or less, because of the size of the hall, and C is consequently restricted to $50 to $2550); Linear Functions Point-Slope Form of a Line - Activity A Slope-Intercept Form of a Line - Activity A Using Tables, Rules and Graphs AG3.05determine graphically the point of intersection of two linear relations, and interpret the intersection point in the context of an application (Sample problem: A video rental company has two monthly plans. Plan A charges a flat fee of $30 for unlimited rentals; Plan B charges $9, plus $3 per video. Use a graphical model to determine the conditions under which you should choose Plan A or Plan B.). Linear Functions Point-Slope Form of a Line - Activity A Slope-Intercept Form of a Line - Activity A Using Tables, Rules and Graphs Measurement and Geometry Overall Expectations MGV.01determine, through investigation, the optimal values of various measurements; MGV.02solve problems involving the measurements of two-dimensional shapes and the surface areas and volumes of three-dimensional figures; Prisms and Cylinders - Activity A MGV.03verify, through investigation facilitated by dynamic geometry software, geometric properties and relationships involving two-dimensional shapes, and apply the results to solving problems. Classifying Quadrilaterals - Activity B Classifying Triangles Parallelogram Conditions Special Quadrilaterals Investigating the Optimal Value of Measurements MG1.01determine the maximum area of a rectangle with a given perimeter by constructing a variety of rectangles, using a variety of tools (e.g., geoboards, graph paper, toothpicks, a pre-made dynamic geometry sketch), and by examining various values of the area as the side lengths change and the perimeter remains constant; Area of Parallelograms - Activity A Perimeter, Circumference, and Area - Activity B Rectangle: Perimeter and Area Special Quadrilaterals MG1.02determine the minimum perimeter of a rectangle with a given area by constructing a variety of rectangles, using a variety of tools (e.g., geoboards, graph paper, a premade dynamic geometry sketch), and by examining various values of the side lengths and the perimeter as the area stays constant; Rectangle: Perimeter and Area Special Quadrilaterals MG1.03identify, through investigation with a variety of tools (e.g. concrete materials, computer software), the effect of varying the dimensions on the surface area [or volume] of square-based prisms and cylinders, given a fixed volume [or surface area]; Prisms and Cylinders - Activity A Surface and Lateral Area of Prisms and Cylinders MG1.04explain the significance of optimal area, surface area, or volume in various applications (e.g., the minimum amount of packaging material; the relationship between surface area and heat loss); Prisms and Cylinders - Activity A MG1.05pose and solve problems involving maximization and minimization of measurements of geometric shapes and figures (e.g., determine the dimensions of the rectangular field with the maximum area that can be enclosed by a fixed amount of fencing, if the fencing is required on only three sides) (Sample problem: Determine the dimensions of a square-based, open-topped prism with a volume of 24 cm3 and with the minimum surface area.). Solving Problems Involving Perimeter, Area, Surface Area and Volume MG2.01relate the geometric representation of the Pythagorean theorem and the algebraic representation a2 + b2 = c2; Distance Formula - Activity A Geoboard: The Pythagorean Theorem Pythagorean Theorem - Activity A Pythagorean Theorem - Activity B MG2.02solve problems using the Pythagorean theorem, as required in applications (e.g., calculate the height of a cone, given the radius and the slant height, in order to determine the volume of the cone); Distance Formula - Activity A Geoboard: The Pythagorean Theorem Pythagorean Theorem - Activity A Pythagorean Theorem - Activity B MG2.03solve problems involving the areas and perimeters of composite two-dimensional shapes (i.e., combinations of rectangles, triangles, parallelograms, trapezoids, and circles) (Sample problem: A new park is in the shape of an isosceles trapezoid with a square attached to the shortest side.The side lengths of the trapezoidal section are 200 m, 500 m, 500 m, and 800 m, and the side length of the square section is 200 m. If the park is to be fully fenced and sodded, how much fencing and sod are required?); Area of Parallelograms - Activity A Rectangle: Perimeter and Area MG2.04develop, through investigation (e.g., using concrete materials), the formulas for the volume of a pyramid, a cone, and a sphere (e.g., use three-dimensional figures to show that the volume of a pyramid [or cone] is 1/3 the volume of a prism [or cylinder] with the same base and height, and therefore that Vpyramid = Vprism/3 or Vpyramid = ((area of base)(height))/3); Pyramids and Cones - Activity A MG2.05determine, through investigation, the relationship for calculating the surface area of a pyramid (e.g., use the net of a square-based pyramid to determine that the surface area is the area of the square base plus the areas of the four congruent triangles); Surface and Lateral Area of Prisms and Cylinders Surface and Lateral Area of Pyramids and Cones MG2.06solve problems involving the surface areas and volumes of prisms, pyramids, cylinders, cones, and spheres, including composite figures (Sample problem: Break-bit Cereal is sold in a single-serving size, in a box in the shape of a rectangular prism of dimensions 5 cm by 4 cm by 10 cm. The manufacturer also sells the cereal in a larger size, in a box with dimensions double those of the smaller box. Compare the surface areas and the volumes of the two boxes, and explain the implications of your answers.). Prisms and Cylinders - Activity A Surface and Lateral Area of Prisms and Cylinders Surface and Lateral Area of Pyramids and Cones Investigating and Applying Geometric Relationships MG3.01determine, through investigation using a variety of tools (e.g., dynamic geometry software, concrete materials), and describe the properties and relationships of the interior and exterior angles of triangles, quadrilaterals, and other polygons, and apply the results to problems involving the angles of polygons (Sample problem: With the assistance of dynamic geometry software, determine the relationship between the sum of the interior angles of a polygon and the number of sides. Use your conclusion to determine the sum of the interior angles of a 20-sided polygon.); Investigating Angle Theorems - Activity A Polygon Angle Sum - Activity A Triangle Angle Sum - Activity A MG3.02determine, through investigation using a variety of tools (e.g., dynamic geometry software, paper folding), and describe some properties of polygons (e.g., the figure that results from joining the midpoints of the sides of a quadrilateral is a parallelogram; the diagonals of a rectangle bisect each other; the line segment joining the midpoints of two sides of a triangle is half the length of the third side), and apply the results in problem solving (e.g., given the width of the base of an A-frame tree house, determine the length of a horizontal support beam that is attached half way up the sloping sides); Classifying Triangles MG3.03pose questions about geometric relationships, investigate them, and present their findings, using a variety of mathematical forms (e.g., written explanations, diagrams, dynamic sketches, formulas, tables) (Sample problem: How many diagonals can be drawn from one vertex of a 20-sided polygon? How can I find out without counting them?); MG3.04illustrate a statement about a geometric property by demonstrating the statement with multiple examples, or deny the statement on the basis of a counter-example, with or without the use of dynamic geometry software (Sample problem: Confirm or deny the following statement: If a quadrilateral has perpendicular diagonals, then it is a square.).
Coded Expectations for MPM1D
Mathematical Process Specific Expectations
Problem Solving MPS.01 develop, select, apply, and compare a variety of problem-solving strategies as they pose and solve problems and conduct investigations, to help deepen their mathematical understanding.
Reasoning And Proving MPS.02 develop and apply reasoning skills (e.g., recognition of relationships, generalization through inductive reasoning, use of counter-examples) to make mathematical conjectures, assess conjectures, and justify conclusions, and plan and construct organized mathematical arguments.
Reflecting MPS.03 demonstrate that they are reflecting on and monitoring their thinking to help clarify their understanding as they complete an investigation or solve a problem (e.g., by assessing the effectiveness of strategies and processes used, by proposing alternative approaches, by judging the reasonableness of results, by verifying solutions).
Selecting Tools and Computational Strategies MPS.04 select and use a variety of concrete, visual, and electronic learning tools and appropriate computational strategies to investigate mathematical ideas and to solve problems.
Connecting MPS.05 make connections among mathematical concepts and procedures, and relate mathematical ideas to situations or phenomena drawn from other contexts (e.g., other curriculum areas, daily life, current events, art and culture, sports).
Representing MPS.06 create a variety of representations of mathematical ideas (e.g., numeric, geometric, algebraic, graphical, pictorial representations; onscreen dynamic representations), connect and compare them, and select and apply the appropriate representations to solve problems.
Communicating MPS.07 communicate mathematical thinking orally, visually, and in writing, using mathematical vocabulary and a variety of appropriate representations, and observing mathematical conventions.
Number Sense and Algebra
Overall Expectations
NAV.01 demonstrate an understanding of the exponent rules of multiplication and division, and apply them to simplify expressions;
NAV.02 manipulate numerical and polynomial expressions, and solve first-degree equations.
Addition of Polynomials - Activity A
Modeling and Solving Two-Step Equations
Solving Two-Step Equations
Operating with Exponents
NA1.01 substitute into and evaluate algebraic expressions involving exponents (i.e., evaluate expressions involving natural-number exponents with rational-number bases [e.g., evaluate (3/2)3 by hand and 9.83 by using a calculator]) (Sample problem: A movie theatre wants to compare the volumes of popcorn in two containers, a cube with edge length 8.1 cm and a cylinder with radius 4.5 cm and height 8.0 cm. Which container holds more popcorn?);
NA1.02 describe the relationship between the algebraic and geometric representations of a single-variable term up to degree three [i.e., length, which is one dimensional, can be represented by x; area, which is two dimensional, can be represented by (x)(x) or x2; volume, which is three dimensional, can be represented by (x)(x)(x), (x2)(x), or x3];
NA1.03 derive, through the investigation and examination of patterns, the exponent rules for multiplying and dividing monomials, and apply these rules in expressions involving one and two variables with positive exponents;
Dividing Exponential Expressions
Exponents and Power Rules
Multiplying Exponential Expressions
NA1.04 extend the multiplication rule to derive and understand the power of a power rule, and apply it to simplify expressions involving one and two variables with positive exponents.
Arithmetic and Geometric Sequences
Dividing Exponential Expressions
Exponents and Power Rules
Manipulating Expressions and Solving Equations
NA2.01 simplify numerical expressions involving integers and rational numbers, with and without the use of technology;* *The knowledge and skills described in this expectation are to be introduced as needed and applied and consolidated throughout the course;
NA2.02 solve problems requiring the manipulation of expressions arising from applications of percent, ratio, rate, and proportion;* *The knowledge and skills described in this expectation are to be introduced as needed and applied and consolidated throughout the course;
Beam to Moon (Ratios and Proportions)
Polling: Neighborhood
NA2.03 relate their understanding of inverse operations to squaring and taking the square root, and apply inverse operations to simplify expressions and solve equations;
NA2.04 add and subtract polynomials with up to two variables [e.g., (2x - 5) + (3x + 1), (3x2y + 2xy2) + (4x2y - 6xy2)], using a variety of tools (e.g., algebra tiles, computer algebra systems, paper and pencil);
Addition of Polynomials - Activity A
NA2.05 multiply a polynomial by a monomial involving the same variable [e.g., 2x(x + 4), 2x2(3x2 - 2x + 1)], using a variety of tools (e.g., algebra tiles, diagrams, computer algebra systems, paper and pencil);
NA2.06 expand and simplify polynomial expressions involving one variable [e.g., 2x(4x + 1) - 3x(x + 2)], using a variety of tools (e.g., algebra tiles, computer algebra systems, paper and pencil);
NA2.07 solve first-degree equations, including equations with fractional coefficients, using a variety of tools (e.g., computer algebra systems, paper and pencil) and strategies (e.g., the balance analogy, algebraic strategies);
Modeling and Solving Two-Step Equations
Solving Two-Step Equations
NA2.08 rearrange formulas involving variables in the first degree, with and without substitution (e.g., in Analytic Geometry, in measurement) (Sample problem: A circular garden has a circumference of 30 m. What is the length of a straight path that goes through the centre of this garden?);
NA2.09 solve problems that can be modelled with first-degree equations, and compare algebraic methods to other solution methods (Sample problem: Solve the following problem in more than one way: Jonah is involved in a walkathon. His goal is to walk 25 km. He begins at 9:00 a.m. and walks at a steady rate of 4 km/h. How many kilometres does he still have left to walk at 1:15 p.m. if he is to achieve his goal?).
Modeling and Solving Two-Step Equations
Solving Two-Step Equations
Linear Relationships
Overall Expectations
LRV.01 apply data-management techniques to investigate relationships between two variables;
LRV.02 demonstrate an understanding of the characteristics of a linear relation;
Linear Functions
Point-Slope Form of a Line - Activity A
Slope-Intercept Form of a Line - Activity A
Using Tables, Rules and Graphs
LRV.03 connect various representations of a linear relation.
Introduction to Functions
Linear Functions
Point-Slope Form of a Line - Activity A
Slope-Intercept Form of a Line - Activity A
Using Tables, Rules and Graphs
Using Data Management to Investigate
LR1.01 interpret the meanings of points on scatter plots or graphs that represent linear relations, including scatter plots or graphs in more than one quadrant [e.g., on a scatter plot of height versus age, interpret the point (13, 150) as representing a student who is 13 years old and 150 cm tall; identify points on the graph that represent students who are taller and younger than this student] (Sample problem: Given a graph that represents the relationship of the Celsius scale and the Fahrenheit scale, determine the Celsius equivalent of -5°F.);
Scatter Plots - Activity A
Solving Using Trend Lines
LR1.02 pose problems, identify variables, and formulate hypotheses associated with relationships between two variables (Sample problem: Does the rebound height of a ball depend on the height from which it was dropped?);
LR1.03 design and carry out an investigation or experiment involving relationships between two variables, including the collection and organization of data, using appropriate methods, equipment, and/or technology (e.g., surveying; using measuring tools, scientific probes, the Internet) and techniques (e.g., making tables, drawing graphs) (Sample problem: Design and perform an experiment to measure and record the temperature of ice water in a plastic cup and ice water in a thermal mug over a 30 min period, for the purpose of comparison. What factors might affect the outcome of this experiment? How could you design the experiment to account for them?);
LR1.04 describe trends and relationships observed in data, make inferences from data, compare the inferences with hypotheses about the data, and explain any differences between the inferences and the hypotheses (e.g., describe the trend observed in the data. Does a relationship seem to exist? Of what sort? Is the outcome consistent with your hypothesis? Identify and explain any outlying pieces of data. Suggest a formula that relates the variables. How might you vary this experiment to examine other relationships?) (Sample problem: Hypothesize the effect of the length of a pendulum on the time required for the pendulum to make five full swings. Use data to make an inference. Compare the inference with the hypothesis. Are there other relationships you might investigate involving pendulums?).
Correlation
Populations and Samples
Solving Using Trend Lines
Understanding Characteristics of Linear Relations
LR2.01 construct tables of values, graphs, and equations, using a variety of tools (e.g., graphing calculators, spreadsheets, graphing software, paper and pencil), to represent linear relations derived from descriptions of realistic situations (Sample problem: Construct a table of values, a graph, and an equation to represent a monthly cellphone plan that costs $25, plus $0.10 per minute of airtime.);
Linear Functions
Point-Slope Form of a Line - Activity A
Slope-Intercept Form of a Line - Activity A
Using Tables, Rules and Graphs
LR2.02 construct tables of values, scatter plots, and lines or curves of best fit as appropriate, using a variety of tools (e.g., spreadsheets, graphing software, graphing calculators, paper and pencil), for linearly related and non-linearly related data collected from a variety of sources (e.g., experiments, electronic secondary sources, patterning with concrete materials) (Sample problem: Collect data, using concrete materials or dynamic geometry software, and construct a table of values, a scatter plot, and a line or curve of best fit to represent the following relationships: the volume and the height for a square-based prism with a fixed base; the volume and the side length of the base for a square-based prism with a fixed height.);
Arithmetic Sequences
Linear Functions
Solving Using Trend Lines
LR2.03 identify, through investigation, some properties of linear relations (i.e., numerically, the first difference is a constant, which represents a constant rate of change; graphically, a straight line represents the relation), and apply these properties to determine whether a relation is linear or non-linear;
Introduction to Functions
Linear Functions
Point-Slope Form of a Line - Activity A
Slope-Intercept Form of a Line - Activity A
LR2.04 compare the properties of direct variation and partial variation in applications, and identify the initial value (e.g., for a relation described in words, or represented as a graph or an equation) (Sample problem: Yoga costs $20 for registration, plus $8 per class.Tai chi costs $12 per class. Which situation represents a direct variation, and which represents a partial variation? For each relation, what is the initial value? Explain your answers.);
Determining a Spring Constant
Direct Variation
Direct and Inverse Variation
LR2.05 determine the equation of a line of best fit for a scatter plot, using an informal process (e.g., using a movable line in dynamic statistical software; using a process of trial and error on a graphing calculator; determining the equation of the line joining two carefully chosen points on the scatter plot).
Scatter Plots - Activity A
Connecting Various Representations of Linear Relations
LR3.01 determine values of a linear relation by using a table of values, by using the equation of the relation, and by interpolating or extrapolating from the graph of the relation (Sample problem: The equation H = 300 - 60t represents the height of a hot air balloon that is initially at 300 m and is descending at a constant rate of 60 m/min. Determine algebraically and graphically how long the balloon will take to reach a height of 160 m.);
Arithmetic Sequences
Linear Functions
Point-Slope Form of a Line - Activity A
Slope-Intercept Form of a Line - Activity A
Using Tables, Rules and Graphs
LR3.02 describe a situation that would explain the events illustrated by a given graph of a relationship between two variables (Sample problem: The walk of an individual is illustrated in the given graph, produced by a motion detector and a graphing calculator. Describe the walk [e.g., the initial distance from the motion detector, the rate of walk].);
LR3.03 determine other representations of a linear relation, given one representation (e.g., given a numeric model, determine a graphical model and an algebraic model; given a graph, determine some points on the graph and determine an algebraic model);
Introduction to Functions
Linear Functions
Point-Slope Form of a Line - Activity A
Slope-Intercept Form of a Line - Activity A
Using Tables, Rules and Graphs
LR3.04 describe the effects on a linear graph and make the corresponding changes to the linear equation when the conditions of the situation they represent are varied (e.g., given a partial variation graph and an equation representing the cost of producing a yearbook, describe how the graph changes if the cost per book is altered, describe how the graph changes if the fixed costs are altered, and make the corresponding changes to the equation).
Defining a Line with Two Points
Direct Variation
Direct and Inverse Variation
Point-Slope Form of a Line - Activity A
Slope-Intercept Form of a Line - Activity A
Standard Form of a Line
Analytic Geometry
Overall Expectations
AGV.01 determine the relationship between the form of an equation and the shape of its graph with respect to linearity and non-linearity;
Linear Functions
Slope-Intercept Form of a Line - Activity A
AGV.02 determine, through investigation, the properties of the slope and y-intercept of a linear relation;
Distance-Time Graphs
Linear Functions
Point-Slope Form of a Line - Activity A
Slope - Activity B
Slope-Intercept Form of a Line - Activity A
AGV.03 solve problems involving linear relations.
Linear Functions
Point-Slope Form of a Line - Activity A
Slope-Intercept Form of a Line - Activity A
Investigating the Relationship Between the Equation of a Relation and the Shape of Its Graph
AG1.01 determine, through investigation, the characteristics that distinguish the equation of a straight line from the equations of nonlinear relations (e.g., use a graphing calculator or graphing software to graph a variety of linear and non-linear relations from their equations; classify the relations according to the shapes of their graphs; connect an equation of degree one to a linear relation);
Cosine Function
Linear Functions
Point-Slope Form of a Line - Activity A
Sine Function
Slope-Intercept Form of a Line - Activity A
AG1.02 identify, through investigation, the equation of a line in any of the forms y = mx + b, Ax + By + C = 0, x = a, y = b;
Defining a Line with Two Points
Point-Slope Form of a Line - Activity A
Slope-Intercept Form of a Line - Activity A
Using Tables, Rules and Graphs
AG1.03 express the equation of a line in the form y = mx + b, given the form Ax + By + C = 0.
Defining a Line with Two Points
Slope-Intercept Form of a Line - Activity A
Using Tables, Rules and Graphs
Investigating the Properties of Slope
AG2.01 determine, through investigation, various formulas for the slope of a line segment or a line (e.g., m = rise/run, m = the change in y/the change in x or m = Δ(y)/ Δ (x), m =(y2 - y1)/(x2 - x1)), and use the formulas to determine the slope of a line segment or a line;
Slope - Activity B
AG2.02 identify, through investigation with technology, the geometric significance of m and b in the equation y = mx + b;
Defining a Line with Two Points
Point-Slope Form of a Line - Activity A
Slope - Activity B
Slope-Intercept Form of a Line - Activity A
Using Tables, Rules and Graphs
AG2.03 determine, through investigation, connections among the representations of a constant rate of change of a linear relation (e.g., the cost of producing a book of photographs is $50, plus $5 per book, so an equation is C = 50 + 5p; a table of values provides the first difference of 5; the rate of change has a value of 5, which is also the slope of the corresponding line; and 5 is the coefficient of the independent variable, p, in this equation);
Distance-Time Graphs
Distance-Time and Velocity-Time Graphs
Linear Functions
Point-Slope Form of a Line - Activity A
Slope - Activity B
Slope-Intercept Form of a Line - Activity A
Using Tables, Rules and Graphs
AG2.04 identify, through investigation, properties of the slopes of lines and line segments (e.g., direction, positive or negative rate of change, steepness, parallelism, perpendicularity), using graphing technology to facilitate investigations, where appropriate.
Slope - Activity B
Using the Properties of Linear Relations to Solve Problems
AG3.01 graph lines by hand, using a variety of techniques (e.g., graph y = 2/3x - 4 using the y-intercept and slope; graph 2x + 3y = 6 using the x- and y-intercepts);
Defining a Line with Two Points Point-Slope Form of a Line - Activity A
AG3.02 determine the equation of a line from information about the line (e.g., the slope and y-intercept; the slope and a point; two points) (Sample problem: Compare the equations of the lines parallel to and perpendicular to y = 2x - 4, and with the same x-intercept as 3x - 4y = 12.Verify using dynamic geometry software.);Defining a Line with Two Points
Point-Slope Form of a Line - Activity A
Slope-Intercept Form of a Line - Activity A
Using Tables, Rules and Graphs
AG3.03 describe the meaning of the slope and y-intercept for a linear relation arising from a realistic situation (e.g., the cost to rent the community gym is $40 per evening, plus $2 per person for equipment rental; the vertical intercept, 40, represents the $40 cost of renting the gym; the value of the rate of change, 2, represents the $2 cost per person), and describe a situation that could be modelled by a given linear equation (e.g., the linear equation M = 50 + 6d could model the mass of a shipping package, including 50 g for the packaging material, plus 6 g per flyer added to the package);
Linear Functions
Point-Slope Form of a Line - Activity A
Slope - Activity B
Slope-Intercept Form of a Line - Activity A
AG3.04 identify and explain any restrictions on the variables in a linear relation arising from a realistic situation (e.g., in the relation C = 50 + 25n, C is the cost of holding a party in a hall and n is the number of guests; n is restricted to whole numbers of 100 or less, because of the size of the hall, and C is consequently restricted to $50 to $2550);
Linear Functions
Point-Slope Form of a Line - Activity A
Slope-Intercept Form of a Line - Activity A
Using Tables, Rules and Graphs
AG3.05 determine graphically the point of intersection of two linear relations, and interpret the intersection point in the context of an application (Sample problem: A video rental company has two monthly plans. Plan A charges a flat fee of $30 for unlimited rentals; Plan B charges $9, plus $3 per video. Use a graphical model to determine the conditions under which you should choose Plan A or Plan B.).
Linear Functions
Point-Slope Form of a Line - Activity A
Slope-Intercept Form of a Line - Activity A
Using Tables, Rules and Graphs
Measurement and Geometry
Overall Expectations
MGV.01 determine, through investigation, the optimal values of various measurements;
MGV.02 solve problems involving the measurements of two-dimensional shapes and the surface areas and volumes of three-dimensional figures;
Prisms and Cylinders - Activity A
MGV.03 verify, through investigation facilitated by dynamic geometry software, geometric properties and relationships involving two-dimensional shapes, and apply the results to solving problems.
Classifying Quadrilaterals - Activity B
Classifying Triangles
Parallelogram Conditions
Special Quadrilaterals
Investigating the Optimal Value of Measurements
MG1.01 determine the maximum area of a rectangle with a given perimeter by constructing a variety of rectangles, using a variety of tools (e.g., geoboards, graph paper, toothpicks, a pre-made dynamic geometry sketch), and by examining various values of the area as the side lengths change and the perimeter remains constant;
Area of Parallelograms - Activity A
Perimeter, Circumference, and Area - Activity B
Rectangle: Perimeter and Area
Special Quadrilaterals
MG1.02 determine the minimum perimeter of a rectangle with a given area by constructing a variety of rectangles, using a variety of tools (e.g., geoboards, graph paper, a premade dynamic geometry sketch), and by examining various values of the side lengths and the perimeter as the area stays constant;
Rectangle: Perimeter and Area
Special Quadrilaterals
MG1.03 identify, through investigation with a variety of tools (e.g. concrete materials, computer software), the effect of varying the dimensions on the surface area [or volume] of square-based prisms and cylinders, given a fixed volume [or surface area];
Prisms and Cylinders - Activity A
Surface and Lateral Area of Prisms and Cylinders
MG1.04 explain the significance of optimal area, surface area, or volume in various applications (e.g., the minimum amount of packaging material; the relationship between surface area and heat loss);
Prisms and Cylinders - Activity A
MG1.05 pose and solve problems involving maximization and minimization of measurements of geometric shapes and figures (e.g., determine the dimensions of the rectangular field with the maximum area that can be enclosed by a fixed amount of fencing, if the fencing is required on only three sides) (Sample problem: Determine the dimensions of a square-based, open-topped prism with a volume of 24 cm3 and with the minimum surface area.).
Solving Problems Involving Perimeter, Area, Surface Area and Volume
MG2.01 relate the geometric representation of the Pythagorean theorem and the algebraic representation a2 + b2 = c2;
Distance Formula - Activity A
Geoboard: The Pythagorean Theorem
Pythagorean Theorem - Activity A
Pythagorean Theorem - Activity B
MG2.02 solve problems using the Pythagorean theorem, as required in applications (e.g., calculate the height of a cone, given the radius and the slant height, in order to determine the volume of the cone);
Distance Formula - Activity A
Geoboard: The Pythagorean Theorem
Pythagorean Theorem - Activity A
Pythagorean Theorem - Activity B
MG2.03 solve problems involving the areas and perimeters of composite two-dimensional shapes (i.e., combinations of rectangles, triangles, parallelograms, trapezoids, and circles) (Sample problem: A new park is in the shape of an isosceles trapezoid with a square attached to the shortest side. The side lengths of the trapezoidal section are 200 m, 500 m, 500 m, and 800 m, and the side length of the square section is 200 m. If the park is to be fully fenced and sodded, how much fencing and sod are required?);
Area of Parallelograms - Activity A
Rectangle: Perimeter and Area
MG2.04 develop, through investigation (e.g., using concrete materials), the formulas for the volume of a pyramid, a cone, and a sphere (e.g., use three-dimensional figures to show that the volume of a pyramid [or cone] is 1/3 the volume of a prism [or cylinder] with the same base and height, and therefore that Vpyramid = Vprism/3 or Vpyramid = ((area of base)(height))/3);
Pyramids and Cones - Activity A
MG2.05 determine, through investigation, the relationship for calculating the surface area of a pyramid (e.g., use the net of a square-based pyramid to determine that the surface area is the area of the square base plus the areas of the four congruent triangles);
Surface and Lateral Area of Prisms and Cylinders
Surface and Lateral Area of Pyramids and Cones
MG2.06 solve problems involving the surface areas and volumes of prisms, pyramids, cylinders, cones, and spheres, including composite figures (Sample problem: Break-bit Cereal is sold in a single-serving size, in a box in the shape of a rectangular prism of dimensions 5 cm by 4 cm by 10 cm. The manufacturer also sells the cereal in a larger size, in a box with dimensions double those of the smaller box. Compare the surface areas and the volumes of the two boxes, and explain the implications of your answers.).
Prisms and Cylinders - Activity A
Surface and Lateral Area of Prisms and Cylinders
Surface and Lateral Area of Pyramids and Cones
Investigating and Applying Geometric Relationships
MG3.01 determine, through investigation using a variety of tools (e.g., dynamic geometry software, concrete materials), and describe the properties and relationships of the interior and exterior angles of triangles, quadrilaterals, and other polygons, and apply the results to problems involving the angles of polygons (Sample problem: With the assistance of dynamic geometry software, determine the relationship between the sum of the interior angles of a polygon and the number of sides. Use your conclusion to determine the sum of the interior angles of a 20-sided polygon.);
Investigating Angle Theorems - Activity A
Polygon Angle Sum - Activity A
Triangle Angle Sum - Activity A
MG3.02 determine, through investigation using a variety of tools (e.g., dynamic geometry software, paper folding), and describe some properties of polygons (e.g., the figure that results from joining the midpoints of the sides of a quadrilateral is a parallelogram; the diagonals of a rectangle bisect each other; the line segment joining the midpoints of two sides of a triangle is half the length of the third side), and apply the results in problem solving (e.g., given the width of the base of an A-frame tree house, determine the length of a horizontal support beam that is attached half way up the sloping sides);
Classifying Triangles
MG3.03 pose questions about geometric relationships, investigate them, and present their findings, using a variety of mathematical forms (e.g., written explanations, diagrams, dynamic sketches, formulas, tables) (Sample problem: How many diagonals can be drawn from one vertex of a 20-sided polygon? How can I find out without counting them?);
MG3.04 illustrate a statement about a geometric property by demonstrating the statement with multiple examples, or deny the statement on the basis of a counter-example, with or without the use of dynamic geometry software (Sample problem: Confirm or deny the following statement: If a quadrilateral has perpendicular diagonals, then it is a square.).